
IMPROVING CODE READABILITY BY TRANSFORMING LOOPS TO
HIGHER ORDER FUNCTION CONSTRUCTS

Anthony DePaul1 Chen Huo2

Software Engineering
Shippensburg University of Pennsylvania

{ad51461, chuo2}@cs.ship.edu

ABSTRACT
Loops can be complex to write and even harder for others to
comprehend. Researchers from the software maintenance
community have been working on automatically generating
describing comments for loops from real world software
projects. As these studies point out, their generated
comments can serve as bridges to further convert the
loops to higher order function constructs since they are
declarative themselves. Examples of higher order functions
include the map function over lists. In this paper, we
present our technique which can comprehend common loop
constructs and directly transform loops to higher order
function constructs by manipulating abstract syntax trees.
Our technique can recognize and transform three common
loop patterns and also has a strategy for general loops. Our
technique can also transform higher order functions back to
loops. We implemented our technique as an Eclipse plugin
to help developers and students make the transition from
loops to higher order function constructs.

KEYWORDS
Program Transformation, Software Maintenance, Software
Engineering

1. Introduction
A recent study [1] surveyed 14,317 real world projects and
found only less than 20% of loops are documented to help
readers. Loops without describing comments are hard to
understand in general. The authors developed a technique
which automatically generates describing comments for
a specific kind of loop. The authors suggested that
developers can further transform loops to Java Stream APIs
themselves. In this paper, we take a step further. Our novel
technique can directly transform 4 kinds of loops to Java
Stream code. The idiom of Java Stream code is to use
“higher order functions” such as map, filter, flatMap,
etc. But first, what magic do these “higher order functions”
have?

Higher order functions, functions that take in or return
other functions, have originally been the primary constructs
for functional programming languages. The idea of using
functions to program can be traced back to Church’s lambda
calculus in the early 30’s. Church’s lambda calculus
is Turing equivalent and can be the building blocks of
a modern programming language [2]. An example of
higher order functions is the map function which takes
in another function and applies it to each element in a
collection. This idea exists in many modern programming
languages, sometimes with slightly different names. For
example, C++ has for_each, Ruby has each, Python has
map, Scala has map and so on. The counterpart for Java
had been missing until 2014 with the release of Java 8.
Java does not provide map for general collections but
rather only gives it to the Stream class and allows other
collections to be converted to a Stream. The evolution
of Java exhibits the “climate change” [3] in contemporary
software development that there is a shift from desktop
applications to web applications, from single core to
concurrent computing. Higher order functions like map are
more adapted to the current climate. For example, they
generally can work without side-effects which is crucial to
concurrent computing. Google’s MapReduce model is a
successful example of this paradigm [4]. Moreover, higher
order functions have solid theoretic foundations [5] and can
be reasoned for optimizations through rigorous proofs [6].

One may say that traditional loops can do whatever these
higher order functions can do. This is true without
any doubt. However, not only loops can be hard to
parallelize because of mutability, but also can be a software
engineering nightmare as they are hard to read. The
community of software evolution and maintenance has
expressed such concerns in several studies, e.g., [1, 7]. The
community believes that loops need describing comments
to be readable. However, one recent study [1] showed
that among 14,317 projects, less than 20% of loops are
documented to help readers. So the same study developed
an automatic method to generate describing comments for
some specific loops in real world projects. Contrarily,
higher order functions are considered more “declarative” as



opposed to being “imperative”. For example, if one writes
lst.filter(isEven), it should be intuitive enough even
for non-developers. In fact, many declarative languages
such as MySQL are designed to be used by people who
don’t know much about general programming. Other
advantages of higher order functions include an easy access
to data level parallelism [3], the processing of large amounts
of data across multiple processors.

Given the advantages of using higher order functions,
efforts have been made to teach them as early as in
introductory programming courses. For example, How to
Design Programs [8] uses Racket, a functional language
which is a variant of Scheme. This text has been
used in several major universities with active community
pedagogical support. However, overall it is still a minor
choice. For/while loops still dominate in introductory
programming courses as the way to express repetitive
constructs. For students that learned loops in their “native”
(programming) languages, it is even harder for them to
adopt higher order functions than absolute beginners. This
is due to the inherent difference between a loop and a higher
order function like map — one relies on mutation and one
does not.

For that matter, we propose to provide automated assistance
to convert loops to declarative maps in Java for the purpose
of software evolution and maintenance. It can also help
developers or students make the transition from imperative
loops. Unlike the existing commenting approaches, e.g., [1,
7, 9, 10, 11], our technique converts loops directly to the
equivalent higher order function constructs, a source to
source program transformation technique. This could be the
ultimate goal for some of the commenting techniques [1].
To be specific, our technique recognizes and transforms
the most common loop patterns to Java Stream constructs.
Common loop patterns without sophisticated structures
take a surprisingly large portion of loops in real world
projects. For example, a study showed that 26% of loops
in the 14,317 real world projects have the simple while-if
construct, that is, a while loop with a nested if statement [1].
To make our technique more accessible, we developed an
Eclipse plugin that can make the transformation within the
project.

To our best knowledge, our technique is the fist attempt
to convert loops to streams in Java for maintenance and
pedagogical purposes. Our contributions include

(1) a technique that can recognize four loop patterns
and transform them to Java Stream constructs
automatically so as to improve the readability of
related code

(2) a technique that can transform common Java Stream
constructs back to loop constructs automatically

(3) an Eclipse plugin that can help developers and
students convert loops to Java Stream constructs so
as to learn about their relations within the project

The rest of the paper is organized as follows: Section 2
discusses related work, Section 3 demonstrates how our
technique works with an example, Section 4 explains
the details of our technique, Section 5 demonstrates the
prototype of our Eclipse plugin, Section 6 summarizes our
research and possible future work.

2. Related Work and Background
We start this section with recent works concerning
readability and maintenance of loops from real world
projects in the software engineering community. We then
point out the necessity of introducing higher order functions
to developers and students by showing the evolution of the
Java language. Next we discuss the connections between
loops and lists. We show that the theories of lists have
been well studied in decades and have solid applications in
real world problems. Finally we discuss the background of
program refactoring and transformation techniques.

2.1 Readability of Loops

Abelson and Sussman [12] contended that programs must
be written for people to read, and only incidentally for
machine to execute. More specifically, it is reported that
the ratio of time spent reading versus writing is well over
10 to 1 [13]. The software maintenance community has
concerns about code readability in real world projects and
has taken measures to automatically generate summaries
given snippets of code, e.g., [1, 7, 9, 10, 11].

In research [1], the authors first conducted a survey of
14,317 real world projects and found only less than 20% of
loops are documented to help readers. The authors extract
“action units” and mine patterns of loops from real world
projects. Their technique generates and only generates
describing comments for loops that contain exactly one
conditional statement. It may seem very specific but they
found that 26% of loops are loop-if’s. The authors stated
that their technique can help developers identify loops that
can be refactored to using the new Java 8 Stream APIs.
For example, a large number of loops with an if-statement
inside can be described as finding a specific element in
a collection. This can be done exactly with higher order
functions provided by Stream APIs. In this sense, our
work is one step ahead such that our technique directly
converts various patterns of loops to Stream operations.
Such transformations can also preserve the readability.
What makes the difference is that our technique parses code
snippets to abstract syntax trees, manipulate the trees, and
can easily convert the trees back to working code but not
just textual comments.

An earlier technique [7] identifies loops that find elements
which are maximum by some calculations and generate
corresponding comments to help readers understand them.
In both cases, Java Stream’s find and maxBy are the higher
order equivalents to the above two loop patterns. It is
easy to see that such higher order functions are descriptive



themselves for the semantics.

2.2 Evolution of Java

Early Java had C-like constructs except for the object
oriented features. During the last two decades, Java has
evolved to have more abstract constructs. For example,
generic types were introduced in Java 5 [14]. Generic types
allow developers to abstract over types, e.g., A in List<A>
is a type variable. Future and Executor were introduced
to provide abstraction over the raw threads [15]. It
rescues developers fromwriting error-prone code involving
Thread. Stream, our star in this paper, was introduced
in 2014. Another new member is Optional which
models absence of values to replace the error prone null.
Furthermore, Futurewas enhanced to support composition
with higher order functions similar to map and flat-map.
The Flow API was added in Java 9 to support reactive
programming which is the backbone of Netflix’s streaming
service [3].

We can see the process of how Java attempts to catch
up to the contemporary software development climate.
However, these new constructs cannot be covered in one
introductory course. We believe that one of contributions of
our technique is to introduce students into this new realm of
Java in a gentle manner by starting with the transformation
from loops to streams.

2.3 Higher Order Functions For Lists

Even when a for/while loop does not operate directly on
lists, the values of its control variables will form a sequence
that resembles a list. From this point of view, every loop can
be interpreted as some list processing operation.

If a programming language adopts higher order functions
for collection types, it usually offers not only map but
also other ones in a bundle. Typical companions include
filter, maxBy, groupBy, reduce, foldLeft, among
others. Due to their declarative nature, it is not hard for one
to derive what they do in conjunction with type information.
Bird [6] provides a thorough discussion on the properties
of such higher order functions. For example, map should
distribute over function composition, i.e., map (f ◦ g) =
map f ◦map g. Another example is the commutativity of
filters.

The distributivity of map turns out to be the property
of a functor in category theory. Spivey generalizes list
operations to category theory concepts [5]. “List” construct
can be considered as a “free monoid functor” given an
underlying set. The list functor not only promotes a regular
set to a set of lists but also promotes regular functions
to handle lists (i.e., map). If list is viewed as a functor,
concatenation, flattening, and reduction of lists are natural
transformations. Finally some natural transformations can
form an adjunction.

Such high level interpretation gives lots of potential for us
to further understand higher order functions on lists. In [6],

the properties described in the study was used to optimize a
text processing procedure from O(n3) to O(n).

2.4 Program Transformation

Program transformation can be applied at different levels
such as source to source or intermediate levels inside
a compiler. Program transformation is often used to
obtain better performance. One of the source to source
transformation techniques is called constant folding [16].
The technique substitutes constants for variable expressions
with the help of the reaching definition analysis. For
example, assignment statements x=10;y=x+10 will be
transformed to x=10;y=10+10. Here we can save
one variable lookup. Examples of intermediate level
transformation techniques are loop jamming and loop
unrolling as part of compiler optimization process [17].

Another application of source to source program
transformation is automatic code refactoring. To
help developers, typical Integrated Development
Environment (IDE)s provide various automatic code
refactoring utilities such as variable renaming, extracting
methods, etc. For example, when the developer decides to
choose a better name for a variable, the IDE can identify
the scope of the variable and change all related occurrences
at the same time when the developer simply changes the
declared name. These commonly used code refactoring
techniques are automatic in the sense that the developer
identifies what to change and the necessary changes will
be applied by the IDE. With more advanced data flow
analysis, the identification of possible code refactoring can
also be automated, e.g., [18].

3. Motivating Example
As an example of transforming loop source into an
equivalent that utilizes Java streams, we will be using a
common goal of loops which is to modify every value in
a list by a common function. In this example, we will be
demonstrating this by multiplying every double value in
a list by two. The code to accomplish this using loops is
shown in Figure 1a while its stream equivalent is shown in
Figure 1b. Some lines in these figures have been split into
multiple lines to better describe the various pieces.

3.1 Map

The original list, loop control variable, result variable, and
current element are common elements within the for-loop
structures we will be transforming. The original list, if the
pattern has one, is the list that is providing the main source
of information for the loop. In Figure 1a, the original list
is lst. The loop control variable is the variable in the for
loop initializer that is assigned a value. In this example, i
is the loop control variable. The result variable represents
the final result of a loop and will be the last variable being
assigned a value or receiving amethod call inside a for-loop.
In this example, the result variable is ans. Finally, we



refer to the current element as a get method invocation of
the original list that uses the loop control variable as its
argument. For this example, lst.get(i) is the current
element.

Next, we will analyze Figure 1a as a developer who is
seeing the code for the first time to demonstrate the greater
challenge of reading loops. Line 1 tells the reader that
the result variable ans will begin as an empty list of the
same typed stored in the original list, double. On line 2,
the reader sees that the there is a for-loop that uses the
loop control variable, i, that has an initial value of zero.
Line 3 shows that the condition of the for-loop is that
the loop control variable i is less than the length of the
original list. Finally, on line 4, the reader sees that the
loop updates i by incrementing it by one on every iteration.
These three statements within the for-statement tells the
reader that the loop will iterate the loop control variable
from zero to one less than the length of the original list.
Line 5 contains the method invocation ans.add. At this
point, the developer knows that a new element will be
added to the result list every iteration of this loop. In
line 6, the reader can see what exactly is being added. It
takes the current variable and multiplies it by two every
time. To completely understand what is happening in
this for-loop, the developer must follow the loop control
variable throughout the loop. First, it is given its initial
value, then the loop condition is checked, then the body is
executed using the loop control variable, the loop control
variable is updated, and the process repeats by checking the
loop-condition again until it is no longer satisfied. Only
after combining all of this information can the developer
deducewhat this loop accomplishes. The reader now knows
that, because the loop will take each element in the list,
multiply it by 2, and add it to the originally empty result
list in order, the result will be the original list with every
value doubled.

Next, we will analyze the example that utilizes streams
demonstrated in Figure 1b. Line 1 tells the reader that
the result variable will be using streams to find its value.
This line does not provide a whole lot of insight into what
the resulting value is going to be so it can mostly be
ignored. Line 2 is the map method invocation. Because
the developer knows that this method will take the stream
and apply the lambda function argument to each element,
it is understood that each element in the stream will be
mapped to a new value. On line 3, the reader can see exactly
what is going to happen to each element. For every value
in the stream, the resulting stream will use the that value
multiplied by two. Already the reader knows that the stream
will contain the elements from the original list multiplied
by 2. Finally, line 4 takes the stream that map produced
and collects the values into a new list to be used as the
result variable. Once again, this line does not provide much
information about the goal of this loop and can largely be
ignored by the reader.

3.2 Our Transformation Technique

Now, we have to be able to transform the example in
Figure 1a to its equivalent stream pattern in Figure 1b. To
begin, we have created abstract syntax tree (AST) diagrams
for both code snippets shown in Figure 2. Looking at these
trees, we can see an easily identifiable structure in the loop
example that can be used to identify it as a map pattern.
The root of this AST is a for-loop that has an initializer,
condition, and updater that makes its loop control variable
iterate from zero to one less than the size of the original list.

In that for-statement’s then block, there is a list add method
invocation and it uses the current variable as its argument.
By detecting this pattern we can tell that this structure has an
equivalent structure that utilizes streams. TheAST that uses
streams is very different than the original AST excluding
one piece. The expression used for the argument of the
add method is used in the lambda expression for the map
method argument. Before this piece can be copied over,
modifications must first be made. The expression from the
add method has references to the current variable i. This
variable does not exist in the stream pattern so it cannot be
used. To solve this, every occurrence of list.get(i) is
replaced with its equivalent, the lambda parameter x. After
this modification has beenmade, this expression can then be
copied over to the new AST. Now that the expression used
in the map method has been properly modified and copied
over, the AST for the stream pattern is now complete.
Finally, the source can updated using the new AST and the
old pattern is replaced.

3.3 Potentials

While parallelizing using Java streams does not always
guarantee performance gains directly, it is a much easier
task for developers to parallelize using streams than to
parallelize a loop manually using Java threads. When a
for-loop is parallelized using Java threads, a developer must
create multiple threads and distribute the loop’s workload.
After adding these optimizations, a developer reading the
code for the first time will have a much harder time
understanding the intention of the loop as they would be
burdened with the additional task of deciphering how the
work was distributed throughout the threads. To use the
parallelized version of streams, readability is not reduced
as stream() is simply replaced with parallelStream().

In the case of the example used in Figure 1b,
parallelizing does not provide any immediate performance
improvements. The operation that map is performing is too
simple and the overhead from using streams overpowers
it. When the expression used for the reduction is more
CPU intensive, the benefits of parallelization begin to
make themselves more apparent. To demonstrate this, a
benchmark was conducted using modified versions of what
is shown in Figure 1a and Figure 1b. stream is replaced
with parallelStream, and, instead of multiplying every
value by two, every value was multiplied by a double



1 ans = new LinkedList<Double>();
2 for (int i = 0;
3 i < lst.size();
4 i++) {
5 ans.add(
6 lst.get(i) * 2);
7 }

(a) For-loop that doubles every element in a list.

1 ans = lst.stream()
2 .map(x ->
3 x * 2)
4 .collect(Collectors.toList());

(b) Use of Java streams to double every element in a list.

1 // 0 < seed < 1
2 static double expensiveCalc(double seed) {
3 double res = 1;
4 for (int i = 0; i < 100; i++) {
5 res = res * seed + 1;
6 }
7 return res;
8 }
(c) The CPU expensive calculation used to demonstrate
parallelization gains.

Figure 1: Code snippets used to demonstrate Java stream
benefits.

generated by the more computationally expensive method
shown in Figure 1c. The seed argument of this method
used for every test is a random number between zero and
one and is created before a test pass is run. The same seed
is used for every call to this method for one pass of these
tests. This means that the resultant list for each pattern
will be identical and only the load being put on the CPU is
changing with this modification.

The benchmark generates a list of one million random
strings and then times the two map patterns described
above. On a CPU with six cores and over 100 test passes,
it completed the map using the single threaded for-loop in
123.16ms on average. The map using parallelized streams
completed in 30.81ms on average. Performance gains from
using parallelStreams is entirely situational and this
amount of improvement should not be expected in every
real world application. Despite this, this benchmark shows
how simple and readable parallelizing with streams can
be. Parallelizing the original for-loop would make the code
immensely more challenging to read while parallelizing the
stream pattern required only one method invocation to be
renamed.

for statement

init, condition,
updater then

i = 0;

i < lst.size();

i++

method invocation

map

name arguments

x -> x * 2method invocation

res.add

expression,
name arguments

lst.get(i) * 2

Figure 2: Map for-loop and stream ASTs.

4. Methodology
Here we will discuss the technique our tool uses to both
detect for-loop patterns and transform them back and forth
between their for-loop structures and equivalent stream
utilizing structures. We will describe how descriptive
features can be extracted from a for-loop to match the
loop to the correct pattern it transforms into. Finally, we
will describe each of the four transformations our tool can
perform.

4.1 Detecting Patterns

In order to analyze the original source, the text is
first converted into an AST which better represents the
structure of the code than text. All pattern detection
and transformations analyze and mutate ASTs before
converting them back into the resultant source code.

Before a for-loop can be transformed into its stream
utilizing equivalent, we must first identify which stream
pattern matches the for-loop. There are some requirements
that each of the transformation patterns need from the
original for-loop. All of the transformation patterns
share these requirements, so every for-loop is checked
against these requirements before moving forward. The
requirements are listed below.

Requirements

(1) The loop must be a for-loop

(2) Maximum of one nested if-statement

(3) Original list must be parameterized

(4) If the result variable is a list, it must be parameterized

(5) The for-loop can only have one initializer

After a for-loop’s AST structure has been found to pass
these common requirements, the next step is to identify
some common loop features. By looking at these common
features, we are able to match a pattern to a loop’s set of
features. We do so by assigning values to the following 5
feature definitions.

Feature Values

• F1 | If-statement: none (0), comparison using result
variable and current variable (1), or other (2)

• F2 | Increments by one (1) or not (0)



• F3 | Range: 0->list length (0), 0->k (1), other (2)

• F4 | Result variable type: type stored in original list
(0), new list (1), original list (2), other (3), none (4)

• F5 | Breaks inside if (1) or not (0)

The research paper that generated comments from for-loops
utilized a similar pattern to identify features of a
for-loop [1]. Finally, by identifying all of these features of a
for-loop, it can now be matched to a pattern. Table 1 can be
used to match a set of for-loop features to its stream pattern
equivalent.

Pattern
Feature F1 F2 F3 F4 F5

Map 0 1 0 1,2 0
Reduce 1 1 0 0 0
Find 2 1 0 0,3 1
General 0

Table 1: Matching features to patterns. Empty cells are used
to represent all possible values for a feature.

When transforming a stream pattern back into a for-loop,
the detection is much simpler. Because the stream patterns
are always strings of method invocations, only the names
of those method invocations and their arguments need to
be checked. For example, to find the map pattern we
need to locate a list being assigned to a string of method
invocations: stream, map, and collect.

Table 2 shows for-loop patterns and their equivalent stream
versions. Note that the variables i, lst, and res represent
the loop control variable, original list, and result variable
respectively. It is not required that those variables use those
exact names.

4.2 Map

To convert a for-loop that matches the map pattern, the
entire for-loop is replaced with the stream structure as
shown in Table 2 and its AST in Figure 3a. Much
of what is needed for the stream pattern never changes.
The method invocations stream, map, collect, and
Collectors.toList are always going to stay the same.
The pieces that vary case by case are the result variable,
original list, and expression used in the map method
invocation. These have to be found and inserted into the
new structure. The result variable and original list are
relatively simple to locate in the for-loop and, once they are
found, get copied over to the new AST. The expression that
is originally used in the for-loop structure to add elements
to the result list (marked expression in Table 2) requires
modifications before it can be used in the stream version.
This is due to the fact that the original expression used
here uses lst.get(i) to refer to the current element. The
list control variable does not exist in the stream version so
it must be replaced. To accomplish this, all occurrences
of the current element that uses the list get method must
be replaced by the lambda parameter x used in the map

argument. If the loop control variable is used in any other
way except for finding the current element, then the for-loop
cannot be converted. Finally, with these pieces copied over
to the new AST, the original for-loop can be replaced and
the new source code generated.

This pattern, and all the others, can be transformed from the
stream version back into a for-loop. To do so, the structure
of the for-loop is created and segments are copied over in
the other direction. Modifications, where required, must be
applied in reverse.

4.3 Reduce

The next pattern transformation involves reducing a list
down to a single element in that list by using a comparison.
Table 2 and Figure 3b show the source and AST structures
respectively. Once again, the structure of the method
invocations stream, reduce, and get will always remain
the same for this pattern. The original list and condition
used, however, must be found within the original for-loop.
While the original list can be copied over from the for-loop
as is, the if condition must be modified because it contains
both the current element and result variable. These need to
be changed because, in the stream version, the loop control
variable and result variable cannot be accessed. Because
of this, the current element is replaced with the lambda
parameter x and the result variable is replaced with the
lambda parameter y. After the new AST is generated, it
can be used to replace the original for-loop.

4.4 Find

The find pattern transforms a for-loop that sets the result
variable to the first element in a list that satisfies a
condition. The original for-loop and its transformation
can be found in Table 2 and Figure 3c shows the AST
transformation. The string of method invocations, stream,
filter, findFirst, and get, is always used in the stream
pattern so that structure will always be used. The pieces
that have to be copied over from the original for-loop
structure are the original list and the condition used in the
if-statement. Like before, the condition in this if-statement
will use the loop control variable to refer to the current
element. As there is no loop control variable in the stream
pattern, the way of referring to the current element must
be changed. When copying the condition over to the
filter method invocation argument, every occurrence of the
current element using lst.get(i) is replaced with the
lambda parameter x.

4.5 General

The final general pattern is only used if a for-loop does not
match any of the other three patterns and does not contain a
break or return statement within the loop body. Table 2
presents the original for-loop and its transformation while
Figure 3d demonstrates the AST transformation. Like the
other patterns, the general stream pattern uses a string of
method invocations, Stream.iterate, takeWhile, and



Loop Stream
Map

for (int i = 0; i < lst.size(); i++) {
res.add([expression]);

}

res = lst.stream()
.map(x -> [expression])
.collect(Collectors.toList());

Reduce
for (int i = 0; i < lst.size(); i++) {

if ([condition])
res = lst.get(i);

}

res = lst.stream()
.reduce((x, y) ->

[condition] ? x : y)
.get();

Find
for (int i = 0; i < lst.size(); i++) {

if ([condition]) {
res = lst.get(i);
break;

}
}

res = lst.stream()
.filter(x -> [condition])
.findFirst()
.get();

General
for (int i = [init];

[condition];
[updater]) {

[body]
}

Stream.iterate([init], i -> [updater])
.takeWhile(i -> [condition])
.forEach(i -> [body]);

Table 2: For-loop and stream pattern code equivalencies.

forEach, that defines the overall structure. For this pattern,
the stream version does have a loop control variable. This
means that init, condition, and body can be copied
over to the new AST as is with no modifications required.
updater, on the other hand, does need to be modified. The
updater in the for-loop updates the loop control variable
with an expression while the lambda in the iterate method
invocation behaves like an assignment. This means that the
updater has to be modified. For example, if i++ is used, the
equivalent expression would be i + 1. After this is done,
the original for-loop AST can be replaced with the new one
and, following that, the new source code.

5. Prototype
Our prototype tool is implemented using the Eclipse Java
development tools (JDT) framework. We first use the JDT
parser to generate the abstract syntax tree of a code snippet.
Then we analyze the AST using the methodology described
in Section 4 to transform the AST. Finally we use JDT
parser to generate source code from the transformed AST.

We developed an Eclipse plugin that can take user inputs
from a prompt window as shown in Figure 4. The plugin
provides two options for the user. One is to transform from
a loop to a stream construct and the other is to transform
a stream to a loop. In either way, the user can input the
code snippet on the top window. The input will be read
in by the plugin and fed to our prototype. Finally the tool

outputs the result in the bottom window. Acceptable inputs,
loops or streams, are restricted to the ones listed in Table 2.
Our plugin will remind the user that it encounters a yet not
convertible input instead of returning an erroneous output.
The benefit of using an Eclipse plugin is that the user can try
out the new stream paradigmwhenever the user wants while
working on a Java project. This can motivate the transition
from loops to higher order functions.

Both the transformation tool and the Eclipse plugin are
available for the public to check out and use. (Links to
the repositories redacted here for the double blind review
process.)

6. Conclusion and Future Work
In this paper, we present our technique which can
transform three common loop patterns and a general loop
pattern to Java Stream constructs. We implemented the
transformation process using JDT and developed an Eclipse
plugin for developers to use in a more accessible manner.
Our technique and prototype implementation can be used
to improve the readability of loops and to evolve the
loops from real world projects. Our technique conducts
source to source transformation which is different from
the current commenting technique which aim to improve
the readability of loops. Our Eclipse plugin can help
developers and students make the transition from loops
to streams as a pedagogical tool. Our insight is that



for statement

init, condition,
updater then

i = 0;

i < lst.size;

i++

method invocation

map

name arguments

[expression]method invocation

res.add

expression,
name arguments

modifications[expression]

(a)Map pattern

for statement

init, condition,
updater then

i = 0;

i < lst.size();

i++

method invocation

(x, y) ->

[condition] ? x : y

arguments

if statement

modifications

[condition]

condition then

res = lst.get(i);

reduce

name

(b) Reduce pattern

for statement

init, condition,
updater then

i = 0;

i < lst.size;

i++

method invocation

method invocation

expression name

findFirstif statement

modifications

[condition]

condition body

res = lst.get(i);

break;

filter x -> [condition]

name arguments

(c) Find pattern

for statement

init, condition,
updater body

updater modifications

i = [init];
[condition];

[updater]

arguments

method invocation

forEach

name

i -> [body]

[body]

expression

method invocation

takeWhile i -> [condition]method invocation

name argumentsexpression

Stream.iterate

expression,
name

[init],
i -> [updater]

arguments

(d) General pattern

Figure 3: For-loop and stream pattern AST equivalencies and modifications.

the plugin is more helpful if it shows not only how to
transform loops to streams but also the other way around
so as to give the learners a full view of the paradigm.
Interestingly, the fact that transformation from streams to
loops is relatively simpler provides evidence that loops are
harder to understand even from the view of an automated
tool.

Our future work includes introducing data flow analysis
to our transformation process. With data flow analysis,
our technique could better understand the meaning of the
loops and provide more accurate transformation to readable
higher order function constructs in general cases. Another
direction of future work is to apply our refined technique to
real world projects for evolution andmaintenance purposes.
Unlike [1, 7] that requires human evaluation for new
comments, the correctness of the transformations can be
automatically verified by the tests that come with the
projects.

References
[1] X. Wang, L. Pollock & K. Vijay-Shanker, Developing
a Model of Loop Actions by Mining Loop Characteristics
from a Large Code Corpus, Proceedings of 31st
International Conference on Software Maintenance
and Evolution (ICSME), IEEE, 2015, 35–44.
[2] G. Michaelson, An Introduction to Functional
Programming Through Lambda Calculus (Dover, 2011).

[3] R.-G. Urma, M. Fusco & A. Mycroft, Modern Java
in Action: Lambdas, Streams, Functional and Reactive
Programming (Manning Publications Co., 2018).
[4] J. Dean & S. Ghemawat, MapReduce: Simplified Data
Processing on Large Clusters, Proceedings of the 6th
Conference on Symposium on Operating Systems Design
and Implementation - Volume 6, OSDI’04, San Francisco,
CA: USENIX Association, 2004, 10.
[5] M. Spivey, A categorical approach to the theory
of lists, Mathematics of Program Construction, ed. by
J. L. A. van de Snepscheut, Berlin, Heidelberg: Springer
Berlin Heidelberg, 1989, 399–408.
[6] R. S. Bird, An Introduction to the Theory of Lists, Logic
of Programming and Calculi of Discrete Design, ed. by M.
Broy, Berlin, Heidelberg: Springer Berlin Heidelberg, 1987,
5–42.
[7] G. Sridhara, L. Pollock & K. Vijay-Shanker,
Automatically Detecting and Describing High Level
Actions Within Methods, Proceedings of the 33rd
International Conference on Software Engineering, ICSE
’11, Waikiki, Honolulu, HI, USA: ACM, 2011, 101–110.
[8] M. Felleisen et al., How to Design Programs: An
Introduction to Programming and Computing (The MIT
Press, 2018).
[9] E. Hill, L. Pollock & K. Vijay-Shanker, Automatically
capturing source code context of NL-queries for software
maintenance and reuse, 2009 IEEE 31st International
Conference on Software Engineering, May 2009, 232–242.



(a) Converting a loop to a stream. (b) Converting a loop to a stream.

Figure 4: Illustrating the use of our Eclipse plugin.

[10] M. Ohba & K. Gondow, “Toward Mining “Concept
Keywords” from Identifiers in Large Software Projects”, in:
SIGSOFT Softw. Eng. Notes 30.4 (May 2005), 1–5.
[11] L. Moreno et al., Automatic generation of natural
language summaries for Java classes, 2013 21st
International Conference on Program Comprehension
(ICPC), May 2013, 23–32.
[12] H. Abelson, G. Sussman & J. Sussman, Structure and
Interpretation of Computer Programs (McGraw-Hill, Inc.,
1996).
[13] R. C. Martin, Clean Code: A Handbook of Agile
Software Craftsmanship (Prentice Hall PTR, 2008).
[14] M. Naftalin & P. Wadler, Java Generics and
Collections (O’Reilly Media, Inc., 2006).
[15] T. Peierls et al., Java Concurrency in Practice
(Addison-Wesley Professional, 2005).
[16] F. Nielson, H. R. Nielson & C. Hankin, Principles
of Program Analysis (Springer Publishing Company,
Incorporated, 2010).
[17] A. V. Aho et al., Compilers: Principles, Techniques,
and Tools (2nd Edition) (Addison-Wesley Longman
Publishing Co., Inc., 2006).
[18] T. Sharma, Identifying Extract-Method Refactoring
Candidates Automatically, Proceedings of the Fifth
Workshop on Refactoring Tools, WRT ’12, Rapperswil,
Switzerland: Association for Computing Machinery, 2012,
50–53.


